AJCN丨中山大学孙逸仙纪念医院陈样新、王景峰、张海峰教授团队发表最新研究,揭示EAT-Lancet饮食模式延缓衰老并延长寿命

浏览量:1367

全球65岁及以上人口数量正以前所未有的速度增长,预计到2050年将达到16亿。过去几十年来,随着公共卫生和医疗服务的进步,人类预期寿命显著延长。然而,人口老龄化与慢性病风险上升密切相关,常导致身体或认知功能障碍及死亡风险增加。

 

2019年EAT-Lancet委员会提出了EAT-Lancet参考膳食,旨在同时促进人类健康和环境可持续性。这种以植物为主的膳食模式强调蔬菜、水果、全谷物和坚果的摄入,同时限制动物源性食品、红肉、添加糖和饱和脂肪。多项研究表明,遵循EAT-Lancet饮食可降低主要慢性病、癌症发病风险及全因死亡率。然而,尽管EAT-Lancet饮食具有潜在健康优势,其与生物衰老和预期寿命的关联尚未得到探索。

 

日前,中山大学孙逸仙纪念医院心血管内科陈样新、王景峰、张海峰教授团队,利用UK Biobank队列,分析探讨了EAT-Lancet饮食模式对生物学年龄及预期寿命的影响,该研究成果发表在American Journal of Nutrition期刊。蔡阳威博士、高静伟助理研究员、吴茂雄助理研究员为该研究的第一作者,陈样新、王景峰及张海峰教授为该研究的通讯作者。

 

 

 

 

研究方法

研究采用采用24小时膳食回顾数据计算EAT-Lancet饮食指数以评估依从性。通过构建多基因风险评分(PRSs)评估生物学年龄的遗传风险。采用多变量线性回归和灵活参数生存模型分别分析EAT-Lancet饮食指数与生物衰老加速、残余预期寿命的关联。通过中介分析识别潜在介导因素。

 

 

 

研究结果

 

研究发现,在141,562名参与者中(平均年龄56.02±7.94岁,其中45.12%为男性),高度遵循EAT-Lancet饮食者与生物衰老速度减缓显著相关(Stubbendorff指数:KDM-BA加速:-1.37岁,95%CI:-1.51至-1.24;PhenoAge加速:-0.93岁,95%CI:-1.00至-0.86)。

 

45岁时,最高EAT-Lancet饮食依从组比最低依从组预期寿命延长1.13年。使用Knuppel指数时观察到相似模式。肥胖指标(尤其是腰围身高比)介导了29.31-35.40%的关联。未发现EAT-Lancet饮食与遗传风险存在显著交互作用。保护效应在一系列敏感性分析和不同亚组中保持均稳健。

 

 

 


 

 

结论


坚持EAT-Lancet饮食与延缓生物衰老和延长预期寿命相关,且不受遗传易感性影响。这表明推广这一可持续膳食模式可作为促进健康长寿的实用营养策略。

 

参考文献

[1] S. Wang, W. Li, S. Li, H. Tu, J. Jia, W. Zhao, et al., Association between plant-based dietary pattern and biological aging trajectory in a large prospective cohort, BMC Med 21 (1) (2023) 310, https://doi.org/10.1186/s12916-023-02974-9.

[2] M. Armanios, R. de Cabo, J. Mannick, L. Partridge, J. van Deursen, S. Villeda,Translational strategies in aging and age-related disease, Nat. Med. 21 (12)(2015) 1395–1399, https://doi.org/10.1038/nm.4004.

[3] X. Gao, T. Geng, M. Jiang, N. Huang, Y. Zheng, D.W. Belsky, et al.,Accelerated biological aging and risk of depression and anxiety: evidence from 424,299 UK Biobank participants, Nat. Commun. 14 (1) (2023) 2277, https://doi.org/10.1038/s41467-023-38013-7.

[4] L. Chen, B. Wu, L. Mo, H. Chen, Y. Zhao, T. Tan, et al., Associations between biological ageing and the risk of, genetic susceptibility to, and life expectancy associated with rheumatoid arthritis: a secondary analysis of two observational studies, Lancet. Healthy. Longev. 5 (1) (2024) e45–e55, https://doi.org/10.1016/S2666-7568(23)00220-9.

[5] X. Gao, Y. Wang, Z. Song, M. Jiang, T. Huang, A.A. Baccarelli, Early-life risk factors, accelerated biological aging and the late-life risk of mortality and morbidity, Q.J.M 117 (4) (2023) hcad247. https://doi.org/10.1093/qjmed/hcad247.

[6] M.E. Levine, Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J. Gerontol. - Biol.Sci. Med. Sci. 68 (6) (2013) 667–674, https://doi.org/10.1093/gerona/gls233.

[7] S. Ahadi, W. Zhou, S.M. Schüssler-Fiorenza Rose, M.R. Sailani,K. Contrepois, M. Avina, et al., Personal aging markers and ageotypes revealed by deep longitudinal profiling, Nat. Med. 26 (1) (2020) 83–90, https://doi.org/10.1038/s41591-019-0719-5.

[8] X. Wang, H. Ma, X. Li, Y. Heianza, J.E. Manson, O.H. Franco, et al.,Association of cardiovascular health with life expectancy free of cardiovascular disease, diabetes, cancer, and dementia in UK adults, JAMA. Intern. Med. 183

(4) (2023) 340, https://doi.org/10.1001/jamainternmed.2023.0015.

[9] Q. Sun, D. Yu, J. Fan, C. Yu, Y. Guo, P. Pei, et al., Healthy lifestyle and life expectancy at age 30 years in the Chinese population: an observational study,Lancet. Public. Health 7 (12) (2022) e994–e1004, https://doi.org/10.1016/S2468-2667(22)00110-4.

[10] L. Fontana, L. Partridge, Promoting health and longevity through diet: frommodel organisms to humans, Cell 161 (1) (2015) 106–118, https://doi.org/10.1016/j.cell.2015.02.020.

[11] X. Wang, S. kumar sarker, L. Cheng, K. Dang, J. Hu, S. Pan, et al., Association of dietary inflammatory potential, dietary oxidative balance score and biological aging, Clin. Nutr. 43 (1) (2024) 1–10, https://doi.org/10.1016/j.clnu.2023.11.007.

[12] Y. Liu, M. Kang, W. Wei, J. Hui, Y. Gou, C. Liu, et al., Dietary diversity score and the acceleration of biological aging: a population-based study of 88,039 participants, J. Nutr. Health Aging 28 (6) (2024) 100271, https://doi.org/10.1016/j.jnha.2024.100271.

[13] S. Esposito, A. Gialluisi, S. Costanzo, A. Di Castelnuovo, E. Ruggiero, A. De Curtis, et al., Mediterranean diet and other dietary patterns in association with biological aging in the Moli-sani Study cohort, Clin. Nutr. 41 (5) (2022) 1025–1033, https://doi.org/10.1016/j.clnu.2022.02.023.

[14] F.B. Hu, Diet strategies for promoting healthy aging and longevity: an epidemiological perspective, J. Intern. Med. 295 (4) (2024) 508–531, https://doi.org/10.1111/joim.13728.

[15] M.A. Clark, M. Springmann, J. Hill, D. Tilman, Multiple health and environmental impacts of foods, Proc. Natl. Acad. Sci. U.S.A. 116 (46) (2019) 23357–23362, https://doi.org/10.1073/pnas.1906908116.

[16] W. Willett, J. Rockstr€ om, B. Loken, M. Springmann, T. Lang, S. Vermeulen, et al., Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems, Lancet 393 (10170) (2019) 447–492, https://

doi.org/10.1016/S0140-6736(18)31788-4.

[17] C. Carcel, C. Bushnell, Can dietary patterns that support planetary health benefit population health? Stroke 53 (1) (2022) 164–166, https://doi.org/10.1161/STROKEAHA.121.037314.

[18] A. Knuppel, K. Papier, T.J. Key, R.C. Travis, EAT-Lancet score and major health outcomes: the EPIC-Oxford study, Lancet 394 (10194) (2019) 213–214, https://doi.org/10.1016/S0140-6736(19)31236-X.

[19] A. Stubbendorff, D. Stern, U. Ericson, E. Sonestedt, E. Hallstr€ om, Y. Borne, et al., A systematic evaluation of seven different scores representing the EAT–Lancet reference diet and mortality, stroke, and greenhouse gas emissions

in three cohorts, Lancet. Planet. Health. 8 (6) (2024) e391–e401, https://doi.org/10.1016/S2542-5196(24)00094-9.

[20] N. Karavasiloglou, A.S. Thompson, G. Pestoni, A. Knuppel, K. Papier,A. Cassidy, et al., Adherence to the EAT-Lancet reference diet is associated with a reduced risk of incident cancer and all-cause mortality in UK adults, One,Earth 6 (12) (2023) 1726–1734, https://doi.org/10.1016/j.oneear.2023.11.002.

[21] S. Zhang, J. Dukuzimana, A. Stubbendorff, U. Ericson, Y. Borne, E. Sonestedt, Adherence to the EAT-Lancet diet and risk of coronary events in the Malm€oDiet and cancer cohort study, Am. J. Clin. Nutr. 117 (5) (2023) 903–909,

https://doi.org/10.1016/j.ajcnut.2023.02.018.

[22] X. Lu, L. Wu, L. Shao, Y. Fan, Y. Pei, X. Lu, et al., Adherence to the EAT-Lancet diet and incident depression and anxiety, Nat. Commun. 15 (1) (2024)5599, https://doi.org/10.1038/s41467-024-49653-8.

[23] H. Wu, J. Wei, S. Wang, L. Chen, J. Zhang, N. Wang, et al., Dietary pattern modifies the risk of MASLD through metabolomic signature, JHEP. Reports 6

(8) (2024) 101133, https://doi.org/10.1016/j.jhepr.2024.101133.

[24] P. Klemera, S. Doubal, A new approach to the concept and computation of biological age, Mech. Ageing, Dev 127 (3) (2006) 240–248, https://doi.org/10.1016/j.mad.2005.10.004.

[25] Z. Liu, P.L. Kuo, S. Horvath, E. Crimmins, L. Ferrucci, M. Levine, A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: a cohort study, PLoS, Med 15 (12) (2018) e1002718, https://doi.org/10.1371/journal.pmed.1002718.

[26] D. Kwon, D.W. Belsky, A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge, GeroScience 43 (6)

(2021) 2795–2808, https://doi.org/10.1007/s11357-021-00480-5.[27] Y.V. Chudasama, K. Khunti, C.L. Gillies, et al., Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: a longitudinal cohort study, PLoS Med. 17 (2020) e1003332, https://doi.org/10.1371/journal.pmed.1003332.

[28] P. Mohammadi-Shemirani, M. Chong, S. Narula, N. Perrot, D. Conen,J.D. Roberts, et al., Elevated lipoprotein(a) and risk of atrial fibrillation, J. Am.Coll. Cardiol. 79 (16) (2022) 1579–1590, https://doi.org/10.1016/j.jacc.2022.02.018.

[29] F. Cui, L. Tang, D. Li, Y. Ma, J. Wang, J. Xie, et al., Early-life exposure to tobacco, genetic susceptibility, and accelerated biological aging in adulthood,Sci. Adv. 10 (18) (2024) eadl3747, https://doi.org/10.1126/sciadv.adl3747.

[30] P.C. Lambert, P. Royston, Further development of flexible parametric models for survival analysis, Stata. J. 9 (2) (2009) 265–290, https://doi.org/10.1177/1536867X0900900206.

[31] Y.V. Chudasama, K.K. Khunti, F. Zaccardi, A.V. Rowlands, T. Yates,C.L. Gillies, et al., Physical activity, multimorbidity, and life expectancy: a UK Biobank longitudinal study, BMC, Med. 17 (1) (2019) 108, https://doi.org/10.1186/s12916-019-1339-0.

[32] Y.V. Chudasama, F. Zaccardi, C.L. Gillies, N.N. Dhalwani, T. Yates,A.V. Rowlands, et al., Leisure-time physical activity and life expectancy inpeople with cardiometabolic multimorbidity and depression, J. Intern. Med. 287(1) (2020) 87–99, https://doi.org/10.1111/joim.12987.

[33] E.W. Flanagan, J. Most, J.T. Mey, L.M. Redman, Calorie restriction and aging in humans, Annu. Rev. Nutr. 40 (1) (2020) 105–133, https://doi.org/10.1146/annurev-nutr-122319-034601.

[34] Q. Sun, M.K. Townsend, O.I. Okereke, O.H. Franco, F.B. Hu, F. Grodstein,Adiposity and weight change in mid-life in relation to healthy survival after age70 in women: prospective cohort study, BMJ 339 (sep29 1) (2009)b3796–b3796. https://doi.org/10.1136/bmj.b3796.

[35] X. Xu, J. Hu, X. Pang, X. Wang, H. Xu, X. Yan, et al., Association between plant and animal protein and biological aging: findings from the UK Biobank, Eur. J. Nutr. 63 (8) (2024) 3119–3132, https://doi.org/10.1007/s00394-024-03494-9.

[36] J.C. Newman, A.J. Covarrubias, M. Zhao, X. Yu, P. Gut, C.-P. Ng, et al.,Ketogenic diet reduces midlife mortality and improves memory in aging mice,Cell. Metab 26 (3) (2017) 547–557.e8, https://doi.org/10.1016/

j.cmet.2017.08.004.

[37] M.N. Roberts, M.A. Wallace, A.A. Tomilov, Z. Zhou, G.R. Marcotte, D. Tran,

et al., A ketogenic diet extends longevity and healthspan in adult mice,Cell. Metab 26 (3) (2017) 539–546.e5, https://doi.org/10.1016/

j.cmet.2017.08.005.

[38] H. Zhang, H. Zuo, Y. Xiang, J. Cai, N. Zhang, F. Yang, et al., Associations ofvarious healthy dietary patterns with biological age acceleration and the mediating role of gut microbiota: results from the China Multi-Ethnic Cohort study, Br. J. Nutr. 132 (11) (2024) 1–13, https://doi.org/10.1017/S0007114524002733.

[39] C. Colizzi, M.C. Harbers, R.E. Vellinga, W.M.M. Verschuren, J.M.A. Boer,S. Biesbroek, et al., Adherence to the EAT-Lancet healthy reference diet inrelation to risk of cardiovascular events and environmental impact: results fromtheEPIC-NLcohort,JAHA12(8)(2023) e026318,https://doi.org/10.1161/JAHA.122.026318.

[40] D. Sun, T. Zhang, S. Su, G. Hao, T. Chen, Q.-Z. Li, et al., Body mass indexdrives changes in DNA methylation, Circ. Res. 125 (9) (2019)824–833, https://doi.org/10.1161/CIRCRESAHA.119.315397.

[41] T.L. Gruenewald, S. Cohen, K.A. Matthews, R. Tracy, T.E. Seeman,Association of socioeconomic status with inflammation markers in black and white men and women in the Coronary Artery Risk Development in Young Adults (CARDIA) study, Soc. Sci. Med. 69 (3) (2009) 451–459, https://doi.org/10.1016/j.socscimed.2009.05.018.

[42] T. Wang, A. Masedunskas, W.C. Willett, L. Fontana, Vegetarian and vegan diets: benefits and drawbacks, Eur. Heart. J. 44 (36) (2023) 3423–3439, https://doi.org/10.1093/eurheartj/ehad436.

[43] M. Leri, M. Scuto, M.L. Ontario, V. Calabrese, E.J. Calabrese, M. Bucciantini,et al., Healthy effects of plant polyphenols: molecular mechanisms, Int. J. Mol.Sci. 21 (4) (2020) 1250, https://doi.org/10.3390/ijms21041250.

[44] P. Di Giosia, C.A. Stamerra, P. Giorgini, T. Jamialahamdi, A.E. Butler,A. Sahebkar, The role of nutrition in inflammaging, Ageing Res.Rev.77(2022)101596,https://doi.org/10.1016/j.arr.2022.101596.

[45] A.A. Johnson, A. Stolzing, The role of lipid metabolism in aging, lifespan regulation, and age-related disease, Aging. Cell. 18 (6) (2019) e13048, https://doi.org/10.1111/acel.13048.

[46] D.D. Wang, Y. Li, S.E. Chiuve, M.J. Stampfer, J.E. Manson, E.B. Rimm, et al.,

Association of specific dietary fats with total and cause-specific mortality,JAMA. Intern. Med. 176 (8) (2016) 1134, https://doi.org/10.1001/jamainternmed.2016.2417.

[47] A.M. Chao, K.M. Quigley, T.A. Wadden, Dietary interventions for obesity:clinical and mechanistic findings, J. Clin. Invest. 131 (1) (2021) e140065,https://doi.org/10.1172/JCI140065.

 

 

 

 
扫码查看原文
 
 
 
 

 专家简介 

 

陈样新 教授

中山大学孙逸仙纪念医院


教授,主任医师,博士生导师,中山大学孙逸仙纪念医院副院长,中山大学中山医学院内科学系主任,中山大学孙逸仙纪念医院伦理委员会主任。国家重点研发计划首席科学家,教育部新世纪优秀人才,广东省杰出青年医学人才。国家心血管病专家委员会委员兼副秘书长,国家心律失常介入质控专家委员会委员,中国医师协会心律学专业委员会常务委员,中华医学会心血管病分会委员,中国医师协会心血管内科医师分会委员,美国心律学会委员(FHRS),中华医学会心电生理和起搏分会第一届中青年电生理专业委员会副主任委员,广东省医学会心血管病分会副主任委员,广东省精准医学应用学会副会长,《中华心血管病杂志》编委,《中华心律失常学杂志》通讯编委,《中国介入心脏病学杂志》编委。主要从事心力衰竭、心律失常、心脏瓣膜病的诊断和微创治疗。主持国家重点研发计划,6项国家自然科学基金(含重点项目),多项省部级重点、重大项目,从事心脏重构和血管稳态的研究。

 

 

王景峰 教授

中山大学孙逸仙纪念医院


教授,主任医师,医学博士,博士生导师,中山大学首届名医,国务院特殊津贴专家,现任中山大学孙逸仙纪念医院心血管内科主任。中华医学会心电生理和起搏分会候任主任委员,国家心律失常介入技术医疗质量控制中心专家委员会副主任委员,中国房颤中心联盟副主席,中国医师协会心律学专业委员会常务委员,广东省医学会心血管病学分会主任委员,广东省医师协会副会长,国家心血管病中心专家委员会委员,美国心律学会委员(FHRS)、《中华心律失常学杂志》副总编辑等。主持10余项国家级科研项目,发表SCI论文110余篇,获多项省部级科技进步奖项。从事心血管系统疾病的医疗、教学、科研40年,擅长各种心血管疾病,尤其是各种疑难危重症心血管病的诊治和心血管介入手术。

 

 

 

张海峰 教授

中山大学孙逸仙纪念医院


医学博士,主任医师、博士研究生导师,博士后合作导师,高血压专科主任,胸痛中心技术副总监,心内科一支部书记。 国家高血压介入治疗工作委员会委员,广东省医学会心血管病学分会委员兼秘书,广东省医学会心血管病学分会介入学组副组长,广东省精准医学会高血压分会副主任委员,大湾区心脏协会结构性心脏病分会副主任委员,广东省中西医结合学会心律失常专业委员会副主任委员,广东省老年保健协会泛血管疾病专业委员会副主任委员,广东省医学会高血压分会委员,广东省医师协会血管介入分会委员,广东省医学会心血管病学分会第十届青年委员会副主任委员。长城青年医师奖全国第2名,GW-ICC青年医师研究奖全国第5名,"逸仙优秀医学人才"荣誉称号获得者,第五届“羊城青年好医生”荣誉称号获得者,中国胸痛中心“护心使者”荣誉称号获得者,广州市“实力中青年医生”荣誉称号获得者。 擅长复杂冠脉病变、TAVI、RDN等介入操作,CVIA青年编委。第一(或通讯)作者发表SCI期刊论文40余篇,累积影响因子约300,参编专著一本;主持国家自然科学基金(3项)、广东省自然科学基金、广州市科技计划、中山大学青年教师培育项目等项目。

 

 

- End -
关注我们
专业的心血管医生学术交流平台

医谱app

扫码或者点击图片下载

微信公众号

扫码或点击图片关注


版权及免责声明:

本网站所发表内容知识产权归属医谱平台、主办方以及原作者等相关权利人,未经许可,禁止进行复制、传播、展示、镜像、上载、下载、转载、摘编等。经授权使用,须注明来源,否则将追究其法律责任。有关作品内容、版权和其他问题请与本网联系。

图片

表情

发表留言

暂无留言

输入您的留言参与专家互动

11
评论
收藏
分享
Copyright©2024 远大康程 京ICP备14005854号-1